skip to main content


Search for: All records

Creators/Authors contains: "Nagrath, Sunitha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hepatocellular Carcinoma (HCC) is one of the most lethal cancers with a high mortality and recurrence rate. Circulating tumor cell (CTC) detection offers various opportunities to advance early detection and monitoring of HCC tumors which is crucial for improving patient outcome. We developed and optimized a novel Labyrinth microfluidic device to efficiently isolate CTCs from peripheral blood of HCC patients. CTCs were identified in 88.1% of the HCC patients over different tumor stages. The CTC positivity rate was significantly higher in patients with more advanced HCC stages. In addition, 71.4% of the HCC patients demonstrated CTCs positive for cancer stem cell marker, CD44, suggesting that the major population of CTCs could possess stemness properties to facilitate tumor cell survival and dissemination. Furthermore, 55% of the patients had the presence of circulating tumor microemboli (CTM) which also correlated with advanced HCC stage, indicating the association of CTM with tumor progression. Our results show effective CTC capture from HCC patients, presenting a new method for future noninvasive screening and surveillance strategies. Importantly, the detection of CTCs with stemness markers and CTM provides unique insights into the biology of CTCs and their mechanisms influencing metastasis, recurrence and therapeutic resistance.

     
    more » « less
  2. Abstract

    Polydimethylsiloxane (PDMS) is an inexpensive robust polymer that is commonly used as the fundamental fabrication material for soft‐lithography‐based microfluidic devices. Owing to its versatile material properties, there are some attempts to use PDMS as a porous 3D structure for sensing. However, reliable and easy fabrication has been challenging along with the inherent hydrophobic nature of PDMS hindering its use in biomedical sensing applications. Herein, a cleanroom‐free inexpensive method to create 3D porous PDMS structures, “ExoSponge” and the effective surface modification to functionalize its 3D porous structure is reported. The ability of ExoSponge to recover cancer‐associated extracellular vesicles (EVs) from complex biological samples of up to 10 mL in volume is demonstrated. When compared to ultracentrifugation, the ExoSponge showes a significant increase in cancer EV isolation of more than 210%. Targeted ultra‐high pressure liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) is further employed to profile 70 metabolites in the EVs recovered from the lung cancer patient's plasma. The resulting profiles reveal the potential intraexosomal metabolite biomarker, phenylacetylglutamine (PAG), in non‐small cell lung cancer. The high sensitivity, simple usage, and cost‐effectiveness of the ExoSponge platform creates huge potential for rapid, economical and yet specific isolation of exosomes enabling future diagnostic applications of EVs in cancers.

     
    more » « less
  3. Abstract

    This work presents chemically stable and biodegradable hydrogel beads for the isolation of circulating tumor cells (CTCs) and circulating exosomes in liquid biopsy. The liquid biopsy hydrogel beads (LBbeads) consisting of alginate and poly(vinyl alcohol) hydrogels show both chemical stability and stimuli‐degradable characteristics. Unlike single‐component hydrogels, this hybrid form is not easily degraded by buffers or cell culture media while its degradable characteristic remains; thus, it is useful in bio‐applications requiring multi‐step processes with various reagents and lengthy incubation periods. We applied our platform to clinical samples for isolating two promising circulating biomarkers for a liquid biopsy, CTCs and exosomes, by conjugating the hydrogel surface with anti‐EpCAM and anti‐CD63 antibodies, respectively, thus achieving 37.4 CTCs and comparable amount of exosome recovery per 1 milliliter of blood. The results show easy device‐free isolation and retrieval of CTCs and exosomes, with recovered circulating biomarkers successfully analyzed by western blot analysis and fluorescence microscopy. We believe that this simple and versatile platform enables us to isolate prominent circulating biomarkers for clinical use in cancer diagnosis.

     
    more » « less
  4. Abstract

    As the recognition between natural killer (NK) cells and cancer cells does not require antigen presentation, NK cells are being actively studied for use in adoptive cell therapies in the rapidly evolving armamentarium of cancer immunotherapy. In addition to utilizing NK cells, recent studies have shown that exosomes derived from NK cells also exhibit antitumor properties. Furthermore, these NK cell‐derived exosomes exhibit higher stability, greater modification potentials and less immunogenicity compared to NK cells. Therefore, technologies that allow highly sensitive and specific isolation of NK cells and NK cell‐derived exosomes can enable personalized NK‐mediated cancer therapeutics in the future. Here, a novel microfluidic system to collect patient‐specific NK cells and on‐chip biogenesis of NK‐exosomes is proposed. In a small cohort of non‐small cell lung cancer (NSCLC) patients, both NK cells and circulating tumor cells (CTCs) were isolated, and it is found NSCLC patients have high numbers of NK and NK‐exosomes compared with healthy donors, and these concentrations show a trend of positive and negative correlations with bloodborne CTC numbers, respectively. It is further demonstrated that the NK‐exosomes harvested from NK‐graphene oxide chip exhibit cytotoxic effect on CTCs. This versatile system is expected to be used for patient‐specific NK‐based immunotherapies along with CTCs for potential prognostic/diagnostic applications.

     
    more » « less
  5. Abstract

    Extracellular vesicles (EVs) are emerging as a potential diagnostic test for cancer. Owing to the recent advances in microfluidics, on‐chip EV isolation is showing promise with respect to improved recovery rates, smaller necessary sample volumes, and shorter processing times than ultracentrifugation. Immunoaffinity‐based microfluidic EV isolation using anti‐CD63 is widely used; however, anti‐CD63 is not specific to cancer‐EVs, and some cancers secrete EVs with low expression of CD63. Alternatively, phosphatidylserine (PS), usually expressed in the inner leaflet of the lipid bilayer of the cells, is shown to be expressed on the outer surface of cancer‐associated EVs. A new exosome isolation microfluidic device (newExoChip), conjugated with a PS‐specific protein, to isolate cancer‐associated exosomes from plasma, is presented. The device achieves 90% capture efficiency for cancer cell exosomes compared to 38% for healthy exosomes and isolates 35% more A549‐derived exosomes than an anti‐CD63‐conjugated device. Immobilized exosomes are then easily released using Ca2+chelation. The recovered exosomes from clinical samples are characterized by electron microscopy and western‐blot analysis, revealing exosomal shapes and exosomal protein expressions. ThenewExoChip facilitates the isolation of a specific subset of exosomes, allowing the exploration of the undiscovered roles of exosomes in cancer progression and metastasis.

     
    more » « less